A first near real-time seismology-based landquake monitoring system

نویسندگان

  • Wei-An Chao
  • Yih-Min Wu
  • Li Zhao
  • Hongey Chen
  • Yue-Gau Chen
  • Jui-Ming Chang
  • Che-Min Lin
چکیده

Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismology-based early identification of dam-formation landquake events

Flooding resulting from the bursting of dams formed by landquake events such as rock avalanches, landslides and debris flows can lead to serious bank erosion and inundation of populated areas near rivers. Seismic waves can be generated by landquake events which can be described as time-dependent forces (unloading/reloading cycles) acting on the Earth. In this study, we conduct inversions of lon...

متن کامل

A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set

Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...

متن کامل

Real-time acoustic tomography system and the experience of Caspian current sea monitoring

The Acoustic Tomography (AT) systems are used to monitor long-term and continuous flow in rivers, seas and oceans. One of the disadvantages of existing systems in Iran is the inability of real-time/automated measurements. In this study, by adding a raspberry Pi computer to the system and performing the required programming, it was possible to do online monitoring. The data are transferred to th...

متن کامل

Feasibility Study of Real-time and Automated Monitoring of Iranian Rivers using 50-kHz Fluvial Acoustic Tomography System

Acoustic Tomography (AT) technique is an innovative method for real-time river monitoring. In this study, not only the accuracy of flow velocity measurement using 50 kHz AT system which is appropriate for narrow rivers (most Iranian rivers) is evaluated, but also its performance is compared with 30 kHz one which is used in wide rivers. The comparison results showed that the velocity resolutions...

متن کامل

INTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS

Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017